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= What is the Role of Flash in Data Ingestion within the Al Pipeline?
= Storage for Al 101
= NVMe over CXL is much more than Just an SSD

= Accelerating GPU Server Access to Network Attached Disaggregated
Storage Using Data Processing Unit
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What is the Role of Flash in Data Ingestion
within the Al Pipeline?
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What is the Role of Flash in Data Ingestion within the Al Pipeline?

S. Sankaranarayanan, S. Rajgopa, S. Somandepalli (Micron)

> Deep Learning Recommendation Model D7 —&% 4 > > 27> a3 VEFICKO LN A ML =Y DEE|ERVF—7
> Metaft D €T /L : L2trillionfB D /X T A =& PBsDT —X% bL—=>JIZfER, THNLRTF v 7R A Y FEZIAA,
> PLY R 7=ty bOY A XE2FT2E. HELRI/OBEIZAEFICEM, R ML —IPFAIRICK 2EBENHEHENZ L,

> RBEAML—YVOREELIORT—Y VI OEII. B

NN =Rl IN =
HEZHE

Record User :> ngfﬂei:‘a:e |:> Disaggregated
Interactions Dataset Storage
In{:;ZZTe Structured Storage Ii E PBs of data
data i A
Serving Fabric ib per model

g - L - ) P d
|, Deecimadeh steprogted | “trainianwd fif;rg;'as;e
GPU Clusters —

Periodic
Checkpoint
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4~ —— Dataset Storage Size

3 Online Ingestion
Bandwidth

Normalized Growth

Qo Q1 Q2 Q3 Q4 Qs Q6 Q7 Q8

 Dataset storage size has grown 2x in 2 years

U 10 bandwidth demand has grown 4x in 2 years

U A scalable architecture should meet storage
and 10 demands

[
: Storage
| Preprocessing
} Training
I
1
0 20 40 60 80 100

Percent of Total Power

O >40% power is spent on Storage + Preprocess

O Less power for trainers = inefficient use of
compute

J Power is an important dimension in scalin
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What is the Role of Flash in Data Ingestion within the Al Pipeline?

> HDDN — X DFilesystem(Tectonic)D F v v > 2 & L TSSD % s A (Shift)
> T—XEIE ZInlineft L. FEBO 7Oy Y ICHERLLC T -4 52 HiGT 2

> RECI0MEEDORT = v 7 %ZmMiLL., JBEBEETHHDDD ADIGEITEERT, 29%HIE L 7=

O Meta solves 10 scaling with an SSD caching layer over Tectonic (HDD-based) called Shift
U Data in Shift is not durable, and Shift leverages underlying Meta’s Cachelib
 Tectonic-Shift saves 29% of power relative to using HDDs alone

Distributed P;‘a—Procosslnq
Y

R . _Chec!tpomling <.

4 Goal of the pipeline is to

Ref / Credit: Meta’s Understanding DSl paper - " .
R v P Meta’s DLRM Pipeline
) FBLeamner Flow ]‘ =5 Training Cluster Master
T ML Enginear !
Job Config A

Data stored in columnar format in a distributed

3
[ orarrg ) .
Monitorn ' —— 1
: — = () E keep training cluster fed filesystem
Hive Data Warehouse Table Partition DPP Master Node B ! ' g ]
s s [ @*‘“?ﬂﬁa““ ) 4 without stalls Significant portion of DLRM data is read out of
Auto-scaling : S .
Form——— — ‘ xS |3 SSD caching layer
— . DPP Worker Nodes [ — : = B
¢ (@) Coching  Veoris| E | 3 | . Inline preprocessing of data includes
£ =" Tectonic y) W Ll H = : <
£ Filesystem g & e decompression, decryption, transformation, and
g L 4 |_BlobStore | €uoi s data filtering
Figure 3: Production data storage and ingestion pipeline architecture. Solid and dashed lines represent data and control Aow, respectively. Preprocessing iS Se[f'contained Within a mini'
(™ . : /’ "= batch operated by a DPP worker
‘1 User interactions are logged (2] Data compressed and stored\‘ (3] Pre-processing is inline P y

=>» growth in training dataset in chunk store

O SSD Cache serve Al data =
leverages data locality across
RM jobs = Help tackle

Aqicron \_ scaling challenge .
6| ©2022 Storage Networking Industry Association. All Rights Reserved.
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What Is the Role of Flash in Data Ingestion within the Al Pipeline?

DIRMD X kL — 7 — 242 O— KD
KUY A X708y 76BRKBU YD —4 > v LT 742 AHN% 0
P L= S TEFERRAS, A PRIEEFY Ty v, U= FEESHICY - Y rL

BILEE Tl T 4 F A FAE.
BT, KERIONFEE, EEAFHL-TICIEIT T v Va2 XAL—Y0E Y BEERA ML —IUHARE

DLRM Storage Trace Analysis - Results

DLRM Preprocessing DLRM Preprocessing o e
Storage Trace w/ GPU w/ CPU DLRM Training on GPU Preprocessing is an offline
'IU , , Trained with 8 GPUs: 1 \taSk ®
. | Preprocessed with 8 Preprocessed with 2 ) I
Experimental Setup ] GPUs 64-core CPUs batch size = 8K, # of | ~
: batches=64014 ||| Read and write payloads are
. | Criteo click datasetin  Criteo click dataset in | Preprocessed dataset in: |arge
What'’s in storage? - ! 2
ge! 1\% Gen. 4 drive Gen. 4 drive 2 Gen. 4 drives (RAIDO),’ p “
Run time (secs) 1900 5181 445 Writes during preprocessing
% Read Volume (#) 72 (7.7M) 55 (17M) 100 (469K) \a re sequential @
(A 1crmm cmnm  CAmemnn !
(4) 1500-6000,,., 500-6000.,., | _ _ ™\
Perf. (MBpS) | 3000wm:a 1800_3000;;& : 45404 Reads on certain portions of
ap 250 >10__ 111 45 the worlflclnad are highly @
Read Payload (kB) | 2 512, 512, | 512, ) >sequentla !
. L !
Read — Sequential | @ 43-55 50-90 68 : Performa nce'dema n-ds from
Volume % T mmms o mmm e Timlarge porfions oftheTrdee] |~~~ """ """ T T T T T T storage are time-variant @
e
Write Payload (KB) |« (2) 1280, 1280, | nA_ 1IN y
Write — Sequential f@ ___________________ 90-99 |
1 |
Vol % 85-95 (in large portions of the N/A > s D @
olume :. _____________________ trace) _ _ _ _ _ : e
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Storage for Al 101 A Primer on Al Workloads
and Their Storage Requirements
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Storage for Al 101 A Primer on Al Workloads and Their Storage

Requirements

C. Ballard (HPE), C. Carlson (AMD)
> AI7T—7 08— FDA L —SEHORA v k%2

» FL—Z Y JICERESNIGPUDHIARZRRILT B7cHIC, 71— A TREBA ML —VEHNELRD
> BEOX L —=2TlEAR, ARICIGCTEYRR ML=V RET 277y b 74— LDBE

StOFaCIe PhaseS OfAI one perspective

Feature Model Model Eval Trainqgm_ﬁﬂqdel

. i : -
Data Cleaning Engineering e and Tuning s =
ETL, Cleaning, Creation/Refinement, raining ‘:—,,I_ﬂf&f‘enﬁe‘\)
Training, Checkpoint, Accuracy measure, Ly =3

Pre-processing, etc. Scaling, Vectorizing, :
Restore, Validate, etc. refinement ID, etc.

etc.

Tune i
Hyperparameters Production Feedback 45

] . to Model Tuning &
Tune Feature Engineering S umng

Tune The Data Set

usines
$ value ®

v WELULL DWIAyT INCLWUIRITTY ITTUUDL Y ADDULIALIVIL. ALl UYL MTDTI VeU.

Extensive use of:

* Data Scientists

* Compute Resources
* Storage Resources
* GPU Resources

With a goal of:

I ¢ Generating a Trained Model

Not generating business value
unless your business is selling
foundational models
(e.g., LLMs)

SNIA.
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Storage for Al 101 A Primer on Al Workloads and Their Storage Requirements

> AlZ EV R XITERAT 5728 121F. Data IngestionHh K Z=
> HBHLEEDH AI’&EﬁH@"%Mﬁu\ EREINTT—RZ2EXZA0Y Y 7105 L. EY R RIBIEZ% X 5 KPID # % {RTF

> EVXRAOAY Yy IDT—REAEFES>TFEL, itV RRAF v v RE2ERHET ZEITER
> BEINAT—XER. AIT—270—FDE=DIZ8xd 2T —XEHNERNIZEZ /-
> AL —COEHEZRBEITHEMN

Pre-Al Business

Business Logic Data

What their data ingest WAS before using Al

Data Insights

Saved Data

Data Valuation
Al Saved Data

Discarded data

Discarded data

10| ©2022 Storage Networking Industry Association. All Rights Reserved. SN I A
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Storage for Al 101 A Primer on Al Workloads and Their Storage Requirements

> ZNAT o747z —XITHIFTARL—V T —270— FDEE
>>%TW@FD——/7%;H\FD—_/y?_Q@ﬁ AABLIOPF v IRA YV FDEEAADEDHIZ, 5LV K
— EREDINE

> EVRZMERIEICE #T%ﬁﬁf@\FM37§AU—Pﬁ$ﬁ%?éﬂ%
> T=hATT =& BABELD, RISHOFBEOLZHICHBAASINE S LIgW

Data Feature Model Model Inference Archive
Cleaning Engineering Training Evaluation
Capacity Capacity Capacity Capacity Capacity Capacity
Read from
Vectorize
Ingest data
Write Perf Write Perf Write Perf Write Perf Write Perf
S @ R S O R S . RM S . R Write Perf
4  / N . & )
) N '~ N Dpoint ) N Tuning s @\R
Read Perf Read Perf Read Perf Read Perf re-training Read%f
S@R SOR S.RTransfer S.R SQRM
‘~r ‘ N’ to GPU <’ N/ used

https://www.snia.org/educational-library/storage-requirements-ai-2024
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Storage for Al 101 A Primer on Al Workloads and Their Storage Requirements

> BRAB 7 —XROBEHICHIGT AT —270— KOMEEZRATET A0V FT—IWFBETES
> fL—=v #m, AbL—>7T7—2o0—F
> FETLIVILDORVYFT—7

Calculating Performance

= Benchmarking

= Publicly available Al benchmarks are available
through ML Commons

= Multiple categories
= MLPerf Training
= MLPerf Inference
* Mobile
= Tiny
= Datacenter
= Edge
= MLPerf Storage
= AlgoPerf: Training Algorithms Benchmark Results

1
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Storage for Al 101 A Primer on Al Workloads and Their Storage Requirements

> Voot L —X
> SDXI :SNIAAYE E D TWBF L WT —XREX AR DIZEERE, T —XEXRICEBAGEEEEBINL T <,
> CS:SNIAENVMe TED TWAR ML —UTNRAREFAE )Y —X2HEEL AL =Y A RTT7 S5 —2 3>

%@Wéﬁ%tw@ﬁ°73vh7j—Ao
> GPU : WHEEMNEBICLYVAZFED T —270— K2 5%E L, HBME M (XN B [l X T & EH

Accelerators — SDXI Accelerators — Computational Storac Accelerators - GPUs
* SDXI is a standard data mover being  « Computation Storage defined by both SNIA = Parallel operations
developed by SNIA and NVMe = Al calculations can be made highly parallel
= Future versions of SDXI| are |00|(ing to p = Open platform for adding computational = Typic_;ally they are multiple similar calculations acrross a
additional functions i | e
. ; . .deVICBS = This is the type of calculation that GPUs are designed to
= Encryption/decryption = Moves the computation closer to the data handle in a massively parallel fashion
= Compression/decompression = Typical functions could be » CPUs typically can only do a single calculation at a time
= Encryption/decryption = Not only do parallel operations reduce the

computation time dramatically, but they also make it
more energy efficient
= HBM - High speed memory typically found on
datacenter GPUs

= Compression/decompression
» Data filtering
= Data preparation for training

13| ©2022 Storage Networking Industry Association. All Rights Reserved. SN I A
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Storage for Al 101 A Primer on Al Workloads and Their Storage Requirements

> VRTLOUBEEROEVEBOOEETRES” Bn=2y /=7 RbL—=Y
> GPUNTEA TWB =HBE%ZRELTWS

> CheckpointBFF DT — X EXIAKR(IC L 5T, GPUDEREIEXRAME T

» CheckpointfF(Z (XNetworklC KEL b T 7 14 v 7 HIFRE

= Remember, you are only as fast as your
slowest part

* Due to inherent latency and device constraints...
Network and storage components are often the
slowest components in a system

Meta’s @scale Jun'24 Credit: Nvidia

= Storage devices typically have slower access & | —Nei —Nies —Nies N
times =
.. 2 300 w
= Networks are limited by latency 55200 l
2
= The goal... Keep the GPUs fed! E
0 50 100
Time (s)

Figure 2: NIC egress traffic pattern dur- =
14| ©2022 Storage Networking Industry Association. All Rights Reserved. ing production model training. SN I A
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Storage for Al 101 A Primer on Al Workloads and Their Storage Requirements

> AT —7 7IIVThwiE. EEER /Ny 7T K%y k7 — 2 (Scale-Out Network)
> Ultra Ethernet consortium : Linux Foundation & 12 L THFEHRDHPC/AIT7 — 27 B — R@EIFOEZE LR v b 7 — 7311l
> #1005/ — K DLk, =FTOEEER|E, EELE, T7—3TE. tF¥Fa2UT1 L EDEEZSH D

> FEWIERTEHRDRE L

General Purpose vs. Scale-Up versus Scale-Out (UEC) Networks

| MNode =i
d ‘j’; [T
Node —
Node g - )
4 ] Front-End *.
i D, H A= (LAN/WAN)  ©
. Node r—— | p, N Network
.
L]
°
: - = Internal bus (PCle/CXL)
Node — xPU Scale-Up
9 ~ Ultra Ethernet
Standard Ethernet

1
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Storage for Al 101 A Primer on Al Workloads and Their Storage Requirements

A7 —270—FREIFDOIBEDR L —VKAT (V77K #7720 b 7Bv )
Model 7 — & |$0bject > Cloud (Z LN 41 5 D AN — & HY
Block L {EEHE AV FE K X 415 CheckpointDALIE [Z[A LT UL B

CXLDOAXEY 7—LIZE->T, R bL =AM R 5ME. Ro9—Z2C8) 74, EEEEZEOMBICT VA —FTE 5

= Three types of storage typically used for Al = Additional Storage Functions could be

= Cloud provided by CXL attached memory pools

= Object = Allows a tiered memory where some, non-

« Block immediate use data, could be stored in a CXL
pool

* Model data (input and output) typically stored CXL and other new memory architectures

In the cloud or on object storage could provide relief to the existing memory
= Block storage often (but not always) used for  pottleneck (or the “memory wall”)

checkpointing
= | ow latency/high performance

1
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Storage for Al 101 A Primer on Al Workloads and Their Storage Requirements

> SNIATIZIOR L —XDTF—RAEZESHTWNS
> AlAITDO L —XIFFFEEWATADLSIEFTL TLEA

SNIA Data pattern repository

= SNIA has an IO trace repository used extensively for research
* The SNIA I/O Traces, Tools, and Analysis repository, IOTTA https://iotta.snia.org

= The repository does not yet have Al Storage workload traces
= A gap SNIA would like to fill

= Please consider sharing any |0 trace data you have with SNIA IOTTA
so we can start building a repository for Al traces

1
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NVMe over CXL i1s much more than Just an
SSD

1
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NVMe Over CXL i1s Much More Than Just a SSD

B. Gervasi (Wolley)

> XEY ER M/—~‘/“7b*‘%u/w>4 VR —T 1 —RATHY, KESLMERT—XULEOT —REFZAALDBENH - 7
> NVMe over CXLIC K Ui A T 5 Z & T, NVMe7°|:| faz@BLTCarybrO—XFYNRy 77 (CMB) ZCXLAR—X(ZEE
L. T—XDHERED DI % TR

> XEUPRY FT—27 DR kLR \/7%%4:,‘% L. AT LEEZHNET S

The NVMe Over CXL Solution: Only grab the FLITs you need

Skl
Aon'e A . . N :_ Lo _I: Pcle SSD
Dual-function device Hound L e B2
PCle/CXL.io i ; At :::d":::’;‘e
g NVMe-oC SSD T — R RS
CXLmem == an NVMe SSD and as S /,' i More memory moves
=T T B b_ytes. Host Directed Memory (HDM) b this intercept
s . > 7 i}:g F:::ic CXL Memory
L e E ' Module
NVMe is just a cache protocol between NAND and DRAM Roofline mode|
NVMe-oC places the controller memory buffer (CMB) in CXL space (HDM) NVMe-oC addresses the NVMe-oC reduces wasted
memory wall which limits Al data traffic over the fabric
Processor grabs only the FLITs needed using CXL.mem ! Run by 30x or more
o : s Checkpoint. 3
The rest of the CMB data (on average, 97%) remains where it is Always let the Host IRl 5
decid h d R NVMe-oC supports persistence,
This cache management scheme is expanded to create Virtual HDM ecide where data \\\// allowing checkpoint elimination
belongs

19| ©2022 Storage Networking Industry Association. All Rights Reserved.
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NVMe Over CXL i1s Much More Than Just a SSD

ERICHW A E > T, HEERIEE A i (SR EETHY LA TV DEENKZT W)
74 FIVREETE T AICEREILR LT 5
vaA IZATHINE T =& T DOMEREERTAKESIZHIZ SN TWAS

SSD& X E U REDBEZECPUDIIED LDBEL /-2 & T, CPUNEBTDIRETH B WV EEEA M

NVMe-oC Demonstration Platform
NVMe-oC Core IP

NVMe-oC Versus Traditional SSD

|mpact of Traffic Reduction

Host Interface CXL 1.1/2.0 Gen3x8 =

HDM 16GB (DDR4-2000) Fih P e —

SSD 128GB ~ 178 &= €0 vs. ative
System Clock 250MHz 5 Native SSD on idle machine I ——

M S == i Native SSD on busy machine ——/""-'ﬁ;’/

Operation Mod Memory / St =
PENODSTER emeny /i Storege HDM NVMe-oC SSD on idle machine | e
(Flash) NVMe-oC SSDon busy machine | ——— -25%
Demonstratlng V'rtual HDM mOde CPU Intel Granite Rapids, 2 processors, 288-cpu ® Read Bandwidth (MB/s) ® Write Bandwidth (MB/s)
using NVMe-oC Memory 12868 DRAM 6400MT STREAM (memory benchmark) with 256 background threads
oS Fedora release 40 (Forty)
Kernel 6.9.5 Results:

2.8X reduced impact on read performance

20| ©2022 storage Networking Industry Association. All Rights Reserved. SN I A
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NVMe Over CXL i1s Much More Than Just a SSD

> HomtSSD%%ﬂ&/—\hﬁ% EC ARV 7Yy MUY IDPIERKLELY SWEREZHT ZEATE S
> SSDIC K> TH P L TWB DT, DRAM% ) bua‘%ott)%zrﬁﬂi(%%:z &)
> TiEtES bwmva JTlE. ZEEZHEPCT I L TDRAME EEDEREA EI]

Virtual HDM Mode Redis Performance Versus HDM Virtual HDM Mode Compression Performance Versus HDM
Impact of Large Memory Footprint Impact of Higher Thread Count
In-memory Compression with Memary
DRAM HDM NVMe-oC (DRAM +55m
q __ 2500 2285
1000 1000 1000 -é‘_ = Laae 2021
800 800 £.2000 1656
£ 1583 1519 1536 A618
600 45 c‘“ g 1500 37 1112 ey 1305
4 = 1055 08

A mm ‘ <00 283 175 * ?EZ 264285 S 1000 8360 801 35‘“

Sgo 163179 45 150 1.60 =2

S 500
0 . . o Ei . . HDM BG+ HDM 16G+ HDM 32G + E I
DRAM 8GR DRAM 16GE DRAM 32GB HDM 8GE  HDM 16GE HDM 32GB SSD 32GR  SS5DA4GB SSD 128GR E_ 0
BSET(KIOPS) B GET [KIOPS) BSET (KIOPS) @ GET (KIOPS) B SET (KIDPS) ®GET (KIOPS) 7] P20 P100
WDRAMBGE ®HDMB8G ®HDM8G+5SD 16GB = HDM 8G + 55D 32GB
Unmodified Redis
(In-memory Key Value Store) Results: LZ77 lossless data compression method Results:
4X memory capacity 5 .
2X performance 4X memory compression
90% cost reduction Same performance as DRAM

More compression threads executed

21| ©2022 storage Networking Industry Association. All Rights Reserved.
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Accelerating GPU Server Access to Network Attached
Disaggregated Storage Using Data Processing Unit
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Accelerating GPU Server Access to Network Attached
Disaggregated Storage Using Data Processing Unit

E. Nurvitadhi (MangoBoost) C. Carlson
> LIMOZBAARICE Y. GPUDEATA IR,

> GPUDXEUTEITTIFAMEL ENAEL REL—=—U0XEY OMENTE CPUMLEA R LRy 7
> DPUZ FH \\7=Storage Disaggregated Storage X°GPU Direct D &%

GPU Server NN I
I
— I I
. = § |
Ll
] a0 [ = GPU Server IS EE—
1000000 HW FLOPS: 60000x / 20 yrs (3.0x/2yrs) —— 1.90 * [ ce I I GPU2GPU
DRAM Bw: 100x / 20 yrs (1.6x/2yve) .. TrUve Storage Server - 1 E S
Interconnect BW: 30x / 20 yrs (1.4x/2yrs) on el | — Storage Network f I I Network
_— : (S50 ] (550 | (G .
i . (ssD | [ssp_| I
. HAMIE erver
[CSSD ] (550 | (iGN GPUS
100 o [ =
°
e [GPU_| [CNIET]
8 voe20 ’ High throughput and capacity: Cic  ceon
rentium b xeon #Ce 1.00 Storage server with 10s of SSDs
001 y y O ——— - Elﬁ'lllnﬂo mr—pnwlllonlng
1996 1999 2002 200% 2008 "M“Dll 2014 2017 2020 023 n " l | I I w H Il 2
Al and Memory Wall Save space for GPU server:
1078 Baidu Racsys Single NIC can provide higher BW than a single SSD
10000 .
Transformer Size: 410x/2 yrs i Baseline + NVMe/TCP Acceleration Al m w P!
Al HW Memory: 2x /2 yrs PrOGCICM .3
= A ") S e | Host Memoafe— ¢, { Host Mamory |
H —
”™ L P | . 70
§ < [ feFCie]
§ 10 vIoe IR TRUNE RGN n-.-:—un 2 * e - ( j ( )
o < pre. S PCle Root Cofl jplex PCle Root Complex
. . > o o
. T
¢ 2 anr PCle Swit ( PCle Suitesi )
L]
i Sl e e B o B | raropesrcarmnican
: . .. = ~ Em Ni DPU DPU | Peerto-peer communication
. .
oo 2016 2017 2018 2019 2020 2021 2022 [ MNetwork - Elhemel Switch ] Network - Ethemet Switch: j
EAR 1
I Smrage System '1 I Storage System —I

Optimize datapath of GPU and resolve resource i@u,mmaldmd contentions
wiubbgpwmmlmu
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Accelerating GPU Server Access to Network Attached
Disaggregated Storage Using Data Processing Unit

> FPGAN— X DSmartNICIC. Filesystem & GPU Direct Storagelsge % 52 3%

> FIOR > F < —72 T, 10 Bandwidth»‘1.7{5%. CPUBTIH 25 % &L,

DeepSpeed Zero Infinity DeepSpeed Zero Infinity
Swapper Module Swapper Module s
10 Bandwidth CPU Utilization
| Normal Swap Mode | Accelerate Swap Mode
&40
I hipruntime I | POSIX File I I hipruntime | Mango File _ ,
I I 1 a 5
| ROCm 3 NVMeTCP | | ROCm | NVMePCI : T
[ [ ‘ i
| GPU Driver il TCP/IP ] | GPU ;Z)ri\rer | foockne: ;
, ' § ;
AMD GPU | NIC Driver | AMD GPU I & s

Generlic NIC : I j w
-

| Implement swapper module in Deepspeed to enable GSB |

U BEUE Wi SW NVMETCP GPU Stormge Boost CPU BEuT w! BW NVMeITCP GPU Btorage Boast

1
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Accelerating GPU Server Access to Network Attached
Disaggregated Storage Using Data Processing Unit

» AMD®DGPU Radeon & Instinct : 3> > 2 — <@ F & DClAl LT
> ROCm : A —7> vV —XOFEFERY —IL

> ROCM : CUDA LibrarytE ¥4 @ Library
> 2016(21.00V Y —X &I N T, FhRiZ62Tc7 a7 74U v 7y —ILhsEil

GPU ROCm

= AMD GPUs come in two classes
» Radeon — Consumer GPUs
» Primarily used for gaming, but can be used for Al/HPC

= |nstinct — Data center GPUs

= CDNA - Architecture Designed for Al and HPC
applications
= HBM - Includes High Bandwidth Memory
* |nfinity Fabric — High speed interconnect
* ROCm Development Platform
= Open source
= Supports Instinct and Radeon GPUs

ROCm Libraries

CUDA Library ROCm Library Description

25| ©2022 Storage Networking Industry Association. All Rights Reserved.
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